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Every Angle Is Worth A Second Glance:
Mining Kinematic Skeletal Structures

from Multi-view Joint Cloud
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Abstract—Multi-person motion capture over sparse angular observations is a challenging problem under interference from both self-
and mutual-occlusions. Existing works produce accurate 2D joint detection, however, when these are triangulated and lifted into 3D,
available solutions all struggle in selecting the most accurate candidates and associating them to the correct joint type and target
identity. As such, in order to fully utilize all accurate 2D joint location information, we propose to independently triangulate between all
same-typed 2D joints from all camera views regardless of their target ID, forming the Joint Cloud. Joint Cloud consist of both valid joints
lifted from the same joint type and target ID, as well as falsely constructed ones that are from different 2D sources. These redundant
and inaccurate candidates are processed over the proposed Joint Cloud Selection and Aggregation Transformer (JCSAT) involving
three cascaded encoders which deeply explore the trajectile, skeletal structural, and view-dependent correlations among all 3D point
candidates in the cross-embedding space. An Optimal Token Attention Path (OTAP) module is proposed which subsequently selects
and aggregates informative features from these redundant observations for the final prediction of human motion. To demonstrate the
effectiveness of JCSAT, we build and publish a new multi-person motion capture dataset BUMocap-X with complex interactions and
severe occlusions. Comprehensive experiments over the newly presented as well as benchmark datasets validate the effectiveness of
the proposed framework, which outperforms all existing state-of-the-art methods, especially under challenging occlusion scenarios.

Index Terms—3D human pose estimation, motion capture, transformer, optimal token attention path
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1 INTRODUCTION

W ITH the fast development of Virtual Reality (VR)
and Augmented Reality (AR) techniques, accessible

VR/AR devices [1], [2], [3] allow people to control their own
avatars immersively by capturing body motion from a head-
set with two handheld controllers. On the other hand, com-
mercial Motion Capture systems [4], [5], [6] provide high-
precision solutions in animation and film-making areas. The
requirement of wearing pieces of equipment leads to incon-
venient experiences. To ease those issues, researchers pro-
pose device-free motion-capturing frameworks. One of the
most efficient and popular approaches is Vision-based Hu-
man Pose Estimation (HPE), showing remarkable progress
in 2D multi-person pose detections [7], [8], [9], [10] and
3D single-person pose estimations [11], [12], [13]. However,
motion capture usually involves multiple targets in one
scene, and thus introduces occlusions and prevents accurate
movement estimation. Multi-view observations are then

• J. Jiang, J. Chen (corresponding author), H. Y. Au, and M. Chen
are with the Department of Computer Science, Hong Kong Bap-
tist University, Hong Kong SAR, China. (e-mails: {csjkjiang, chenjie,
cshyau}@comp.hkbu.edu.hk, csmychen@hkbu.edu.hk).

• W. Xue is with the Division of Emerging Interdisciplinary Areas, the
Hong Kong University of Science and Technology, Hong Kong SAR,
China. (e-mail: weixue@ust.hk).

• Y. Guo is with the Department of Computer Science and Engineering,
the Hong Kong University of Science and Technology, Hong Kong SAR,
China. (e-mail: yikeguo@ust.hk).

• This work was supported by the Research Grants Council of Hong Kong
(Project No. T45-205/21-N), and by the Hong Kong Baptist University
(Project No. RC-OFSGT2/20-21).

introduced to provide additional information based on the
assumption that joints occluded from one view are visible
from another view. Current studies [12], [14], [15], [16], [17],
[18] show that multi-view multi-person 3D HPE can be
formulated as a multi-stage framework, i.e., use a 2D pose
detector to estimate 2D poses from calibrated observations,
and then apply triangulation algorithm [19] to reconstruct
3D motion.

The main challenge of a multi-stage framework is the as-
sociation of 2D detections across views to the target identity
and joint type. Due to ambiguities caused by occlusions, the
inaccuracy in 2D detections may lead to bad associations.
Here we categorise occlusions into self-occlusion which
is caused by one’s own body part, and mutual-occlusion
which is caused by others. As shown in Fig. 1, 2D detectors
have inherent limitations on occlusions: 1) self-occlusion
happened in Row 2, Col 3, makes the left knee assigned
to the wrong joint type (right knee), 2) mutual-occlusion
happened in Row 1, Col 1, makes the left arm assigned
to the wrong target ID (other people). Incorrect association
error accumulates throughout the whole lifetime of the
multi-stage framework, producing twisted motion results.
To solve those issues, existing approaches [14], [15], [16],
[21], [22] select the most accurate 2D candidates (discarding
others) and then associate these with the target ID and
joint type. However, these may lead to sub-optimal results
(incorrect target ID and joint type) and cannot truly solve
the error-accumulation issue. In our previous study [23], we
propose to utilize the masking learning mechanism [24] to
explore the correlation among partial motion. It enables us
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Fig. 1: Demonstration of 2D detections from state-of-the-art
2D pose detectors [7], [9], [10] at the same timestamp on
Shelf dataset [20]. Although both produce the most accurate
results, there are still some defects notated by red dotted
boxes regarding the limbs: 1) assigned to incorrect target
identity, 2) assigned to incorrect joint type.

to circumvent the above sub-optimal issue by filtering those
low-confidence 3D joints and reconstructing the complete
motion with high accuracy performance and also enables
our model to handle the missing. Nevertheless, as analyzed,
2D detections may have the wrong ID/joint type but accu-
rate positions, which we cannot overlook.

To this end, our approach aims to leverage all available
2D detections by operating under the assumption that each
detected 2D joint possesses an accurate position, but with
a lower certainty regarding its target ID and joint type.
Following this, we introduce the concept of Joint Cloud
(JC), which consists of all 3D triangulated candidates from
2D detections within the same joint type between every
two views, as shown in Fig. 2. Therefore JC contains both
potentially valid joints lifted from the same target ID and
joint type, as well as irregular ones that may come from
different sources. We further propose a Joint Cloud Selection
and Aggregation Transformer (JCSAT) based on three cas-
caded encoders that deeply explore the trajectile, skeleton-
structural, and view-dependent correlations among all 3D
candidates in the cross-embedding space. Besides, an Op-
timal Token Attention Path (OTAP) module is proposed to
select and aggregate informative features from redundant
candidates. In addition, following the masked language
modelling task in BERT [26], we train our model based on
a masked learning scheme to increase its robustness. Ex-
periments on public datasets demonstrate the efficiency of
our proposed framework against state-of-the-art methods.
We also validate our method on a newly collected dataset,
BUMocap-X which features complex interactions and heavy
occlusions. BUMocap-X is an expanded version of BUMo-
cap [23], approximately 0.3 times larger and includes two
additional actors’ motions. It captures a 5-actor group dance
with complex interaction.

The main contributions are listed as follows:

• We introduce the concept, formation, and exploitation
methodology of the Joint Cloud (JC). JC is designed
to fully utilize all accurate 2D joint locations via inde-

pendent triangulation between all same-typed 2D joints
from all camera views regardless of their target ID.
This data arrangement improves information utiliza-
tion from all observation angles.

• We propose the Joint Cloud Selection and Aggregation
Transformer (JCSAT) framework which involves three
cascaded encoders that deeply explore the trajectile,
skeleton-structural, and view-dependent correlations
among all 3D candidates in the cross-embedding space.

• Different from existing Transformer frameworks that
rely on full self-attention mechanisms to associate and
aggregate features, we propose the Optimal Token At-
tention Path (OTAP) module which selects the most in-
formative feature from noisy and redundant options for
more robust and accurate prediction of human motion.

• We build and publish the BUMocap-X dataset, a com-
prehensively and precisely annotated multi-person mo-
tion capture dataset featuring complex interactions and
significant occlusions. Utilizing this dataset, we show-
case the robustness of our proposed framework in
effectively handling challenging occlusion scenarios.

2 RELATED WORKS

Multi-view multi-person 3D HPE. These frameworks
are normally built upon two stages. We divide them
into two categories: optimization-based and learning-based.
Optimization-based methods mainly focus on the second
stage. Pioneers in this field, such as [20], [27] propose a 3D
pictorial structure (3DPS) model for searching correspond-
ing body joints from a common state space shared by all
bodies. Zhang et al. [14] associate 2D joints across views by
optimizing the proposed geometric energy function, which
includes the epipolar distance, PAF score [7] and tracking
distance. Dong et al. [15] propose two affinity matrices
for associating target bodies. These matrices measure the
distance between 2D input pairs in terms of re-id visual
features and geometric constraints. They adopt the 3DPS
model to reconstruct the final motion. Inspired by [14], [15],
Zhou et al. [18] associate joint at part- and body-level. They
build a skeletal graph, which includes all possible joint con-
nections, and adopt a clustering algorithm to optimize the
best connection. Learning-based methods [16], [21] propose
to use 3D convolutional neural networks (CNNs) to locate
the most likely 3D joint from a voxel-based 3D heatmap.
Those techniques allow for an end-to-end manner where
losses can be back propagated to the first stage. However,
those voxel-based regressions have a significant computing
cost due to their greedy space discretization. Following the
voxel representation, Ye et al. [28] accelerate the inference
speed by utilizing 2D CNNs. Choudhury et al. [25] apply
a Kalman filter and Spatial Gated Recurrent Units (GRUs)
for pose tracking and forecasting. SelfPose3D [29] suggests
that combining synthetic root data with augmented 2D
pseudo-pose data improves model accuracy. Despite their
high accuracy, these methods lack generalizability and are
unable to cope with changes in camera parameters. On
the other hand, Lin and Lee [30] propose a plane-sweep-
stereo-based network for regressing each joint’s depth in
every view. It enables real-time inference but requires fusing
3D poses from all views into the same coordinate, which
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a) 4DAssocGraph

(CVPR’20)

b) DMAE

(MM’22)

d) JCSAT

(ours)

f) Ground truthe) Joint Cloudc) TEMPO

(ICCV’23)
Fig. 2: Qualitative comparison with the most recent multi-view multi-person motion capture frameworks on our newly
collected dataset BUMocap-X. We demonstrate the projection and rendered results as well as the manual-labelled ground
truth (from left to right: 4DAssocGraph [14], DMAE [23], TEMPO [25], ours, the Joint Cloud, and the ground truth). We
provide the rendered Joint Cloud of Actor-3 in ten frames. Same-typed joints are connected to indicate the trajectory. The
proposed model reasons on trajectile, structural skeletal and angular information from the Joint Cloud and produces better
predictions than existing frameworks, especially under occlusion scenarios.

may result in duplicate poses. We argue that, regardless of
whether the method is optimization- or learning-based, the
quality of 2D detections remains the bottleneck of the multi-
stage framework. Under heavy occlusions, 2D detections
may have false target ID and joint type (see Fig. 1) in the
first stage, resulting in the error-accumulated association
in the second stage and ultimately leading to sub-optimal
performance. In contrast, we propose the Joint Cloud which
consists of all 3D joint candidates regardless of their target
ID in order to preserve 2D detections in terms of their
precise location. We then propose the JCSAT framework to
select the potentially valid ones from redundancy with the
trajectile, skeletal and angular cross-embedding.
Motion prior. Recently, some research has been done to in-
volve motion prior to 3D HPE tasks. Some studies [31], [32]
predict the contact of limbs to make the 3D reconstruction
physically plausible. Some [33], [34] use physics simulation
to avoid floor penetration. Some other works [12], [35],
[36] propose to estimate each camera’s extrinsic parameters
based on projection consistency across views. Pose2UV [37]
focuses on human mesh recovery. It incorporates the human
body mesh prior and the 2D pose prior to predict the
corresponding SMPL-based [38] multi-person movements.
Notably, it introduces a large-scale multi-view multi-person
motion dataset 3DMPB with automatically annotated hu-
man target segmentation maps and SMPL data. In contrast,
our datasets, BUMocap and BUMocap-X, are annotated
manually. And we involve a weak prior which comes from
the body’s kinematic structure. We presume that the bone
length should remain consistent throughout a motion se-
quence, and the structure should maintain a symmetrical
form.
Graph-based motion modelling. Another line of work ex-
emplifies the potential of graph models in human motion
modelling. Yan et al. [39] focus on diverse designs of graph
convolution kernels. Various works [17], [23], [40], [41]
propose implementing Transformer-based networks for 3D
HPE tasks. Some [17], [40], [41] treat each input 2D joint as a
token [26] and apply Transformer [42] to learn the projection
between 2D and 3D. POTR-3D [43] proposes to utilize three
Transformers to explore multi-person interactions. MTF-

Algorithm 1 Joint Cloud Construction

Input
D , 2D detections
C , Camera matrix

Output
J , Joint Cloud

function CLUSTER (J,M )
s← JHip

c← KMeans(s,M)
for m = 1→M and i = 1→ I do

if dist(ji,m, cm) < thi then ▷ Thresholding
Jm ← ji,m

end if
end for
return Jm

end function

function CONSTRUCT JOINT CLOUD (D,C)
for n = 1→ N and i = 1→ I do

for (v′, v′′)← v̇ and (m′,m′′)← ṁ do ▷ Eq. 1, 2
ji,ṁn,v̇ ← τ(dn,v

′

i,m′ , d
n,v′′

i,m′′ ,Cv′ ,Cv′′) ▷ Triangulate
end for
Jm
n ← CLUSTER(Jn,min(Mn,1,Mn,2, · · · ,Mn,v))

end for
return J

end function

Transformer [44] investigates the problem of calibration-
free 3D HPE by using Transformers to parallelly predict
camera extrinsic and motion. Our previous work [23] uses a
Transformer-based Auto-encoder to complete the 3D mo-
tion. In this work, we further explore the capability of
the Transformer in 3D motion modelling. The proposed
model receives 3D joint candidates from the Joint Cloud,
aggregates and selects them from redundancy, and then
regresses these to produce the final motion.
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Fig. 3: The proposed JCSAT pipeline for efficiently extracting kinematic skeletal structures from multi-view Joint Clouds.
For every multi-view camera pair (e.g., αγ), the Trajectory Encoder and Structure Encoder aggregate trajectile and skeletal
features from the triangulated Joint Cloud in parallel. The T-OTAP and S-OTAP modules select the optimal tokens along
the joint candidate axis (joint candidates are constituents of the Joint Cloud, with each joint having multiple candidates
triangulated from different camera view pairs) in a differentiable manner. By traversing through all joints and frames,
these candidate feature tokens are then blended element-wise into cross-embedding tokens. The cross-embedding tokens
are then gathered across the axis of camera view pairs. A View Encoder extracts angular features based on which the
subsequent V-OTAP module selects the most representative token for every joint across all frames. Ultimately, an MLP
head module decodes the refined trajectory. The three OTAP modules enable comprehensive and efficient optimization of
the entire system from end to end.

3 METHODOLOGY

Our primary objective is to reconstruct multi-person move-
ments from calibrated multi-view video sequences. In con-
trast to conventional pipelines that discard most of the 2D
detections, we try to fully utilize them. To achieve this, we
propose the notion of the Joint Cloud in Sec. 3.1. Since the
Joint Cloud contains potentially valid candidates as well
as redundant ones, we propose a Joint Cloud Selection
and Aggregation Transformer (JCSAT) to distinguish among
them in Sec. 3.2. Following each encoder, the redundant
features are aggregated by the proposed Optimal Token
Attention Path (OTAP) module in Sec. 3.3. The aggregated
features are last regressed by a multi-layer perception (MLP)
prediction head to 3D motion. The proposed framework’s
pipeline is illustrated in Fig. 3, and its details are described
in the subsequent sub-sections.

3.1 Joint Cloud Construction
Suppose there are M person targets captured by V cali-
brated cameras, with each camera recording an N frames of
video from different viewing angles. As the first step, a 2D
pose detector (e.g., Openpose [7]) is applied to estimate 2D
poses for each target (person). Ideally, the detector correctly
identifies I types of human joints (e.g., left shoulder, right
elbow and so on) and accurately estimates their 2D locations
as Dn,v =

{
di,mn,v ∈ R2

}
, where subscript n ∈ [1, N ] denotes

the frame number and v ∈ [1, V ] denotes the view index, su-
perscript i ∈ [1, I] denotes the joint type and m ∈ [1,Mn,v]

denotes the target identity, respectively. Mn,v stands for the
total number of observed human targets from the camera
view v in the frame n.

As discussed, existing approaches struggle in associating
2D joints with the correct target ID and joint type con-
sistently across the views. Challenges mainly come from
ambiguities caused by occlusions resulting in wrong ID and
joint type assignments. Unlike conventional pipelines where
early evaluations and thresholding operations are applied to
exclude ones that are more likely to be wrong and choose
only one (or a few) candidates for subsequent regression,
we propose to directly triangulate all 2D joints of the same
type from all possible pairwise view combinations:

{v̇ = (v′, v′′) | v′, v′′ ∈ [1, V ] and v′ ̸= v′′} , (1)

where v̇ represents one of such combinations. Since we
do not consider each 2D joint’s initial ID information (pre-
sumably error-prone under occlusion), the triangulated 3D
candidates will have different target ID combinations as
well:

{ṁ = (m′,m′′) | m′ ∈ [1,Mn,v′ ], m′′ ∈ [1,Mn,v′′ ]} . (2)

We collect all possible 3D candidates, including those
that are extremely noisy and redundant, from each video
frame with mixed view and ID combinations, i.e., Jn ={
ji,ṁn,v̇ ∈ R3

}
. And by accumulating Jn, from all frames, we

form the final Joint Cloud: J = {J1,J2, · · · ,JN}.
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As analyzed, J is extremely noisy and redundant. To
reduce computational complexity, we establish a simple
algorithm to cluster J into smaller ones based on spatial
proximity. We first select joints that belong to the middle-
hip type. Then we apply the K-Means algorithm to get
each target body’s centre. We separate joint candidates by
calculating their Euler distance with each body centre with
a predefined threshold. Algorithm. 1 describes the detailed
Joint Cloud construction procedure.

3.2 Kinematic Structures from Trajectile and Skeletal
token cross-embedding

Joint Cloud J consists of 3D candidates ji,ṁn,v̇ that are
extremely noisy and redundant, especially with respect to
their target ID and joint type labels. In this work, we
propose a Joint Cloud Selection and Aggregation Trans-
former (JCSAT) framework, which is a Transformer-based
structure as shown in Fig. 3. Inspired by DMAE [23], each
3D candidate ji,ṁn,v̇ will be treated as a Transformer’s token.
JCSAT focuses on selecting and aggregating valid trajectile,
skeletal and angular features from noisy evidence. Specifi-
cally, JCSAT consists of three cascaded encoder modules that
deeply explore the correlations among the candidate tokens
along different dimensions. Each encoder is followed by an
Optimal Token Attention Path (OTAP) module which dif-
ferentiates and optimally selects reliable and representative
candidate token features in a differentiable manner. Finally,
an MLP prediction head regresses the aggregated tokens to
3D human motion trajectories.

The input sequence (after padding), J =
{J1,J2, · · · ,JN}, can be organized as a five-dimensional
matrix J ∈ RN×V̇×Ṁ×I×3 where each dimension
represents the frame index n, triangulation view pair index
v̇, candidate index ṁ, joint type i, and its corresponding
3D coordinate, respectively. Here V̇ and Ṁ denote the
total number of view combinations and candidate count
(ID combination). First, a trainable linear projection layer is
used to embed each candidate ji,ṁn,v̇ into a high-dimensional
feature. Then we rearrange the input features into Frame-
Target-major and Type-Target-major data structures. In
Frame-Target-major data structure, we encode all tokens
from the same view combination and the same joint type
by Trajectory Encoder (TEnc). In Type-Target-major data
structures, similarly, we encode all tokens from the same
view combination and the same frame index by Structure
Encoder (SEnc). These two procedures can be formulated as:

ẑi,v̇T = TOTAP(TEnc(proj ({ji,ṁn,v̇ | for all n and ṁ})
+ PosT ))

=
{
zi0,v̇, z

i
1,v̇, · · · , zin,v̇

}
,

(3)

ẑn,v̇S = SOTAP(SEnc(proj ({ji,ṁn,v̇ | for all i and ṁ})
+ PosS))

=
{
z0n,v̇, z

1
n,v̇, · · · , zin,v̇

}
,

(4)

where ẑ is a set of the encoded joint patch, proj is the
projection layer, and Pos is the position encoding. To be
more precise, ẑi,v̇T and ẑn,v̇S are designed to represent i-th
joint’s trajectory and n-th frame’s body structure at v̇-th

view pair respectively. Each OTAP module aggregates the
features by reducing the data on the candidate dimension
ṁ. In other words, OTAP helps us to select the most
suitable representatives in terms of the joint’s trajectory and
the body’s structure. Next, we blend two representations
by element-wise addition as Trajectile and Skeletal cross-
embedding to share spatial and temporal information cohe-
sively. After that, the redundant view dimension is encoded
by VEnc and aggregated by the following OTAP module:

ẑi,nV = VOTAP(VEnc(proj (
{
ẑ0T + ẑ0S , · · · , ẑv̇T + ẑv̇S

}
)

+ PosV )),
(5)

where ẑi,nV represents the i-th joint’s token at n-th frame. It
can be regarded as a motion representation. Last, an MLP
prediction head is used to regress the motion representation
to 3D movements.

3.2.1 Position Encoding

Similar to the vanilla Transformer [42], we add position
encoding to facilitate the Transformer in distinguishing the
input tokens. Following DMAE [23], we employ the Fourier
encoding [45] to encode the joint position, frame index, joint
type index and view index respectively:

PosEnc(x) = [cos(2πBx), sin(2πBx)]
T
, (6)

where x ∈ RDemb×Din is the input, and B ∈ RDout×Demb is
a random matrix in Gaussian distribution which is sampled
from N (0, σ2) and σ is a hyperparameter. Demb, Din and
Dout denote the dimension of embedding, input and output
respectively. In this way, the PosT , PosS and PosV in Eq. 3,
4, 5 can be formulated as:

PosT = PosEnc(ji,ṁn,v̇ ) + PosEnc(n), (7)

PosS = PosEnc(ji,ṁn,v̇ ) + PosEnc(i), (8)

PosV = PosEnc(v̇). (9)

3.2.2 Joint type conversion in MLP

The skeleton type is inconsistent between the 2D detector
and the 3D ground truth. The 2D detector we use pre-
dicts 25-joint skeletons named Body25 while in the Shelf
or Campus dataset, it provides 14-joint skeletons named
Shelf14. Existing works [14], [15], [30] rely on hard-code
interpolation to convert the reconstructed skeleton format to
the ground-truth skeleton format for training or evaluation.
Jiang et al. [23] adopt the MAE [24] concept to complete
Shelf14 with Body25 during inference. However, both con-
version approaches have their drawbacks. The hard-code
interpolation discards several joints, such as the foot toe and
only keeps the ankle while the toe’s location does affect the
ankle’s prediction. DMAE [23]’s implicit completion leads
to expensive computation. Different from them, we propose
to use a simple and lightweight MLP layer to convert the
skeleton format. Specifically, we fully connect the latent
code on the joint type dimension and reduce the joint type
number from I to I ′.
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3.2.3 Joint Cloud Masking
Each view pair could observe different body targets, leading
to inconsistent candidate numbers. To rectify this, Joint
Cloud is padded with zero to maintain a fixed-dimensional
matrix form. Naturally, the zero padding should be masked
in the self-attention mechanism [42]. We also perform token
masking during training, to mimic the masked language
modelling task [26]. To increase the model’s robustness,
we introduce randomness by randomly masking the input
candidates: randomly select a mask ratio and apply it in
every training batch.

3.3 Differentiable Feature Selection and Aggregation

Considerable noise and redundancies exist in the output
of the cross-embedding encoders TEnc, SEnc and VEnc. As
shown in Fig. 3, TEnc encodes N × Ṁ candidate tokens
while only N tokens are regarded as output representing
trajectory details for each joint. SEnc encodes I × Ṁ can-
didate tokens while only I tokens are regarded as output
representing the skeletal structure of the current frame. And
VEnc encodes (I×N)× V̇ tokens while only (I×N) tokens
represent the cross-view information. As such, our aim is
to reduce redundancy from J and calculate representative
token features in a differentiable manner.

One straightforward idea is to directly aggregate infor-
mation from all candidate tokens and rely on the Trans-
former’s self-attention mechanism to differentiate useful
information from noise. This is in a way similar to ViT [46]
which aggregates the class token from image patches. We
refer to it as Non-selective aggregation. However, we argue
that the 3D joint candidates from J do not conform to
any rigorous statistical distribution, i.e., the discrepancies
existing between the candidates are mutually exclusive in
the sense that there should be one that is most correct, while
all the others will only contribute negatively to the final
regression accuracy when considered inclusively. We will
validate this assumption in the ablation study.

As such, we propose an Optimal Token Attention Path
(OTAP) module to select the most representative token(s)
along desirable dimensions in a differentiable manner,
named selective aggregation. Given latent representation in
the form z ∈ RK1×K2×K3 , and a loss function LOTAP(z).
Our goal is to minimize the loss function by selecting
only one candidate along the second dimension k2, thereby
arriving at a more compact representation z′ ∈ RK1×K3 in
the end. Such selection task can be considered as an optimal
transportation problem [47], in which the transportation
plan P ∈ R(K1×K2)×K3 converts embedding to z′:

z′ =
√
K2 ×

{
K1×K2∑
k=1

Pk,1z̄k, · · · ,
K1×K2∑
k=1

Pk,K2 z̄k

}
, (10)

where z̄ ∈ R(K1×K2)×K3 is calculated from z ∈ RK1×K2×K3

by vectorizing along its first and second dimensions, and
z̄k ∈ R1×K3 denotes the k-th row of z̄. We ensure P
approximates a permutation matrix, i.e., having the row
sum and column sum close to 1, via regularization with
Sinkhorn’s algorithm [48].

The OTAP module will be used to select optimal tokens
along the joint candidate dimension (k2 = ṁ) for TEnc

and SEnc. However, for TEnc, k1 dimension will be set for
the frame indices n, while for SEnc, k1 will be set for join
type i, respectively. For the view encoder VEnc, OTAP will
be employed to select the most informative viewing angle
(k2 = v̇), and the k1 dimension will be set for i× n.

Remark 1. We want to make sure that the token selection
process should be done in a differentiable manner, since we
will need to progressively reconsider, and update the selection
outcomes after checking on trajectory consistency, skeletal
structural and angular factors in an iterative manner. And
the selection process will in-turn help to improve the cross-
embedding encoders to generate more discriminative fea-
tures among the noisy observations.

Remark 2. When we remove the proposed OTAP mod-
ule, the aggregation process will be downgraded to non-
selective aggregation. The merit of the OTAP module is
evaluated in Table 7.

3.4 Loss functions
Several loss functions are carefully designed to fulfil the
end-to-end learning manner. First, we use Mean Squared
Error (MSE) to compute the reconstruction loss Lrec be-
tween the prediction and ground-truth 3D joints in Carte-
sian space:

Lrec =
1

N + I

N∑
n=1

I∑
i=1

∥Predni −Gtni ∥ , (11)

where Predni and Gtni represent the prediction and ground-
truth 3D joint i at frame n, respectively. ∥·∥ represents the
L2 norm.

Second, we project both prediction Predni and ground-
truth Gtni to 2D to compute each view’s projection loss
Lproj :

Lproj =
V∑

v=1

(
1

N + I

N∑
n=1

I∑
i=1

∥∥∥∥∥∏
v

Predni −
∏
v

Gtni

∥∥∥∥∥), (12)

where
∏

v is v-th camera’s projection matrix.
Third, for kinematic structure learning, we adopt one of

the 3D HPE evaluation metrics, the Percentage of Correctly
estimated Parts (PCP) as the Kinematic Loss Lpcp:

Lpcp =
1

N + L

N∑
n=1

L∑
{a,b}∈L

Relu(∥Predna −Gtna∥

+ ∥Prednb −Gtnb ∥ − ∥Gtna −Gtnb ∥),

(13)

where L represents the limb between joint a and joint b.
Relu in this equation acts as a hinge loss which enables
Lpcp equal to 0 when the reconstructed limb is correct (See
Sec. 4.1.2 for details). We also compute the projected Kine-
matic Loss. Moreover, the human body is nearly symmetric
and consistent during movement. That means the right
side’s bone length should be similar to the left side’s. The
length of the same bone should be consistent across frames.
Based on this observation, we compute the structure loss
Lbone to enable the above constraint:

Lbone =
1

N + L− 1

N∑
n=2

L∑
l=1

∥∥Limbn−1
l − Limbnl

∥∥
+

1

N + S

N∑
n=2

S∑
{r,l}∈S

∥Limbnr − Limbnl ∥ ,
(14)
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where Limb represents the predicted limb length and l
denotes the limb index. {r, l} ∈ S represents the symmetric
limb pair. In practice, we only compute the upper/lower
arms, upper/lower legs and right/left eye-to-ear limbs, eye-
to-nose limbs in OpenPose [7] body format. Overall, the
final loss L is given by:

L = Lrec + Lproj + Lpcp + Lbone. (15)

4 EXPERIMENTS

4.1 Experimental Setup
4.1.1 Dataset
We evaluate our framework against state-of-the-art methods
using the following datasets. The limited availability of an-
notated multi-view multi-person motion datasets highlights
the necessity and value of our BUMocap and BUMocap-X.

(i) The Campus and the Shelf datasets. These are two
widely used benchmarks proposed by [20], [27] where
the Campus captures the outdoor activities of three in-
dividuals over three calibrated cameras, while the Shelf
captures four individuals with five cameras indoors.
Two datasets have annotated 1231 and 831 frames, re-
spectively. However, these frames are partially labelled,
leading to few training data.

(ii) The BUMocap [23] and BUMocap-X datasets. The
BUMocap records 90 seconds of challenging 3-actor
interactive motions from five calibrated cameras with
fully manual annotation. In order to better evaluate the
performance of various methods under serious occlusion,
we further expand it and present BUMocap-X, with
an additional 120 seconds of extremely challenging 5-
actor interactive motion from five cameras. BUMocap-
X records group dance routines including self-rotations
and positional changes. Given the nature of the dance
movements, we believe that the richness of the actions
in this dataset far surpasses that of the previous one.

(iii) The CMU Panoptic dataset [49]. It is currently the
largest dataset with 65 sequences, and 1.5 million
frames of 3D skeletons under 8 motion categories. The
annotation is auto-generated by Kinect [50] build-in
algorithms. Note that most individuals are without
occlusion, which makes pose estimation relatively easy.
Following [21], we select data from five cameras (i.e.,
HD cameras 3, 6, 12, 13, 23) for evaluation.

(iv) The Markerless dataset [14]. It consists of 4 video
sequences with challenging 6-actor interactive motions.
Since there is no ground truth, we use this only for
qualitative evaluation.

4.1.2 Evaluation Metrics
Following the evaluation protocols in previous works [14],
[15], [21], [22], [23], [30], [51], we first used the Percentage
of Correctly estimated Parts (PCP) for evaluation. PCP indi-
cates the correctness of the reconstructed limb by comparing
the ground-truth limb length and the distance sum between
reconstruction and ground truth at the joint level. More-
over, we used the Mean Per Joint Position Error (MPJPE)
and Percentage of Correctly estimated Keypoints (PCK)
as additional metrics. MPJPE measures the total average
distance for the whole skeleton. PCK measures the true joint

TABLE 1: Quantitative comparison on the Shelf dataset. PCP
(%) is used as the evaluation metric. “AVG” means the
average PCP (%) score of three actors (A1-A3). “†” indicates
recalculated performance values for this experiment setup,
which could differ from the original papers.

Method A1 A2 A3 AVG Pub. Venue

3DPS [51] 75.3 69.7 87.6 77.5 TPAMI’15
4DAssocGraph [14] 99.0 96.2 97.6 97.6 CVPR’20

MVPose [15] 98.8 94.1 97.8 96.9 TPAMI’21
TesseTrack [21] 99.1 96.3 98.3 97.9† CVPR’21

PlaneSweepPose [30] 99.3 96.5 98.0 97.9 CVPR’21
MMG-CRG [22] 99.3 96.5 97.3 97.7 ICCV’21

DMAE [23] 99.7 94.1 98.4 97.4 MM’22
QuickPose [18] 99.5 96.7 98.2 98.1 SIGGRAPH’22

FasterVoxelPose [28] 99.4 96.0 97.5 97.6 ECCV’22
TEMPO [25] 99.0 96.3 98.2 97.8† ICCV’23

SelfPose3D [29] 97.2 90.3 97.9 95.1 CVPR’24

Ours 99.3 97.0 98.2 98.2

if the distance between the reconstruction and the ground
truth joints is smaller than a certain threshold. Following
4DAssocGraph [14], we set the threshold at 0.2 meters to
calculate the Precision-Recall metric.

4.1.3 Implementation Details
We implemented our model with three standard ViTs [46].
TEnc and SEnc share the same structure. Similar to [24]’s
asymmetrical structure design, we make VEnc 50% narrower
and shallower than TEnc and SEnc for reducing the comput-
ing cost. We adopted [47]’s optimal transport implementa-
tion in the OTAP module because of their open source well-
managed package. During inference, we apply a shifting
window to gather candidates from the Joint Cloud. We set
the window length as N = 10.

For the Shelf dataset, we followed previous works [20],
[27], [51] in training and evaluating configurations. In addi-
tion, We synthesized the ground truth for those non-labelled
or non-complete-labelled frames by [14]. For the Campus
dataset, we fine-tuned the model trained on the Shelf for
50 epochs. Following [15], [21], [30], we adopted HRNet [9]
as the 2D detector for fairness of comparison. Since HRNet
predicts Coco17 [52] skeletons, we padded the 2D detection
to be consistent with Body25 [7]. For the training scheme,
we used a dropout rate of 0.1. We adopted the AdamW opti-
mizer with a cosine decay beginning with 10−5. The training
epoch was set to 120. The batch size was set to 5. To ease the
problem of limited training data, we performed orientation-
based data augmentation as follows: (i) every input motion
sequence was subtracted by the cluster centre which belongs
to the first frame of the sequence; (ii) randomly rotated Joint
Cloud along the vertical direction. More details can be found
in the supplementary material.

4.2 Quantitative Evaluation
For the Shelf dataset, quantitative evaluations using the PCP
metric are presented in Table 1. We compared our method
with recent state-of-the-art 3D HPE methods which can
be generally divided into two categories: (1) optimization-
based approaches [14], [15], [18], [51] and (2) learning-based
approaches [21], [22], [23], [25], [28], [29], [30]. Note that
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TABLE 2: Quantitative comparison on the Campus dataset.
PCP (%) is used as the evaluation metric. “†” indicates
recalculated performance values for this experiment setup,
which could differ from the original papers. “‡” indicates
recalculated values based on our own re-implementation.

Method A1 A2 A3 AVG Pub. Venue

3DPS [51] 93.5 75.7 84.4 84.5 TPAMI’15
4DAssocGraph‡ [14] 64.8 82.0 96.6 81.1 CVPR’20

MVPose [15] 97.6 93.3 98.0 96.3 TPAMI’21
TesseTrack [21] 97.9 95.2 99.1 97.4 CVPR’21

PlaneSweepPose [30] 98.4 93.7 99.0 97.0 CVPR’21
FasterVoxelPose [28] 96.5 94.1 97.9 96.2 ECCV’22

TEMPO [25] 97.7 95.5 97.9 97.0† ICCV’23
SelfPose3D [29] 92.5 82.2 89.2 87.9 CVPR’24

Ours 99.6 93.5 98.8 97.3

for the results presented in Table 1, only Actor-2 is heavily
occluded, which substantially increases the difficulty of joint
location reconstruction. It can be seen that our method
showed more obvious advantages compared to other meth-
ods in this challenging scenario.

For the Campus dataset, results are presented in Table 2.
We compared the performances among three optimization-
based approaches [14], [15], [51] and five learning-based
approaches [21], [25], [28], [29], [30]. We observed that there
exists a large PCP score gap between the optimization-
based and learning-based approaches. We believe this gap is
caused by imprecise camera calibration, which leads to inac-
curate triangulation. Since optimization-based methods are
more heavily reliant on these initial triangulation and cam-
era association, their performance on the Campus dataset
was seriously affected/degraded. Moreover, our method
learnt the moving trajectory from Actor-1 and Actor-3 while
Actor-2 is stationary most of the time in the video sequence,
which decreases the performance.

Table 3 demonstrates the performance of state-of-the-
art methods [14], [23], [25], [28] on the BUMocap and
BUMocap-X datasets in terms of PCP, Precision, Recall
and MPJPE metrics. Following [23], we trained our model
and fine-tuned it on BUMocap and BUMocap-X datasets.
We trained Faster VoxelPose [28] and TEMPO [25] under
the same configurations mentioned in their papers respec-
tively. We unified those skeletons in Skel19 [14] instead of
Coco17 [52] used in [23], in order to prevent unfair com-
parison caused by false skeleton conversion when interpo-
lating joints are missing. As shown in Table 3, our method
significantly outperforms other methods. We’ve noticed that
DMAE [23] failed to reconstruct most of the movements for
the BUMocap-X dataset. We believe it failed because the
simple re-ID algorithm in DMAE [23] failed to distinguish
individuals with similar outlooks. Faster VoxelPose [28]
didn’t perform well for both datasets. We believe the reason
lies that it cannot model the connection between voxelized
joint heatmaps, especially when two people overlap causing
mutual ambiguities. TEMPO [25] utilizes temporal informa-
tion to ease the above issue, thus the performance is higher
than [28]. Although TEMPO [25] proposes to utilize Spatial
GRUs to model pose features in the temporal domain, it
failed behind us, because our model explores the correlation
among poses as well as joints, making our model able

TABLE 3: Quantitative comparison on the BUMocap (BU)
and BUMocap-X (BU-X) datasets. Average PCP(%), Pre-
cision (%), Recall (%) and MPJPE (mm) are reported.
“‡” indicates recalculated values based on our own re-
implementation.

Method PCP ↑ Precision ↑ Recall ↑ MPJPE ↓
Dataset BU/BU-X BU/BU-X BU/BU-X BU/BU-X

4DAssocGraph [14] 82.1/73.1 95.1/95.1 94.4/95.1 70.8/56.5
DMAE [23] 94.3/57.0 97.5/77.5 97.5/48.4 56.3/113.4

FasterVoxelPose [28] 82.0/74.8 86.2/67.5 86.2/67.5 105.7/163.0
TEMPO‡ [25] 88.7/81.8 86.4/77.1 86.4/77.1 96.5/136.5

Ours 95.5/88.5 97.9/97.8 97.9/97.8 52.2/49.7

TABLE 4: Quantitative comparison with [14] on the CMU
Panoptic dataset. We report our performance in terms of
the detailed PCP (%), average PCP (%) and average MPJPE
(mm). “LU.”, “RU.”, “LL.” and “RL.” stand for “Left Up-
per”, “Right Upper”, “Left Lower” and “Right Lower”
respectively.

Subset ID 160224 160422 160906
Subset Name haggling1 ultimatum1 pizza1
Body Num. 3 7 6

Method Ours [14] Ours [14] Ours [14]

LU. Arm 99.9 99.9 99.9 99.9 99.9 99.9
RU. Arm 99.9 99.9 98.9 97.3 98.1 99.9
LL. Arm 99.6 99.4 95.1 88.9 99.9 99.9
RL. Arm 98.6 97.3 96.6 91.9 93.2 93.9
LU. Leg 99.9 99.9 98.9 98.9 99.9 97.0
RU. Leg 99.9 99.5 99.6 99.9 97.3 99.9
LL. Leg 99.9 99.9 98.2 99.9 98.2 97.0
RL. Leg 99.9 99.9 99.2 99.9 99.9 99.9
Head 91.4 93.0 84.3 89.2 88.3 88.9
Torso 99.9 99.9 99.9 99.9 99.9 99.9

AVG PCP ↑ 98.9 98.9 97.1 96.6 97.5 97.6
AVG MPJPE ↓ 32.7 34.1 51.3 60.7 47.1 46.3

to resolve ID/joint ambiguities. In addition, MVPose [15]
crashed frequently due to re-ID failure. Therefore, we didn’t
present its quantitative evaluation, while qualitative demon-
strations are provided in the supplementary material.

For the CMU Panoptic dataset [49], evaluation results are
shown in Table 4. As shown in the table, we found that our
proposed method outperforms others by a small margin. In
fact, all methods present relatively high-performance scores
due to the fact that the CMU Panoptic dataset presents less
challenging occlusion problems.

4.3 Qualitative Evaluation

The qualitative evaluation results on the Shelf, BUMocap,
BUMocap-X, and the Markerless datasets are shown in
Fig. 4, Fig. 5, Fig. 2, and Fig. 6, respectively. We provide
visual comparisons of 4DAssocGraph [14], DMAE [23],
TEMPO [25] and our proposed model. We highlight the
falsely reconstructed parts with a red dotted box. As can
be seen in Fig. 4, 4DAssocGraph [14] estimated incorrect
joint locations on the arms and legs under heavy occlusions,
with wrong ID association. DMAE [23] predicted wrong foot
locations because this prediction is related to other joints’
temporal and structural information while other joints are
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Fig. 4: Qualitative comparison with 4DAssocGraph [14] and DMAE [23] on the Shelf dataset. We demonstrate each
projection for two clips in four views. In addition, we demonstrate the Joint Cloud for Actor-2 across a sequence of 10
frames. For a clear view, all joints in the same type are connected to represent trajectories and the predicted skeleton is
drawn as an indicator.
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Fig. 5: Qualitative comparison with 4DAssocGraph [14] and
DMAE [23] on our newly collected dataset. We also visualize
the Joint Cloud of Actor-1 and Actor-3 across 10 frames. The
predicted skeletons from the first and last frames are used
as indicators.
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Fig. 6: Qualitative comparison with 4DAssocGraph [14]
on Markerless [14] dataset. We visualize three video clips
by comparing two consecutive frames to demonstrate the
temporal consistency.

associated similarly to [14]. Our model predicted more
reasonable and precise locations by using the trajectory and
structural information for the unseen joints for Actor-2 in
clip 2. For the testing results over the Markerless dataset
shown in Fig. 6, since we trained the models on the Shelf
dataset and tested on the Markerless dataset, the skeleton
format is Shelf14, which differs from the output presented
by 4DAssocGraph [14]. Nevertheless, when considering the
limbs, our proposed framework yields more faithful 3D
movements. More qualitative results can be found in the
supplementary material.

Moreover, to assess the generalization ability of our
model, we conducted cross-dataset performance evalua-
tions. Specifically, we trained the JCSAT using the Shelf,
BUMocap and BUMocap-X datasets and then tested it on
alternate datasets. Given that the Shelf dataset provides a 15-
joint annotation, we standardized both the ground truth and
the predictions to this skeleton definition. Other training
or testing configurations remain the same. The results are
presented in Table 11. Our observations confirm that our
model is able to transfer the learnt motion prior across dif-
ferent datasets. However, we noted a decline in performance
when the model, trained on the Shelf dataset, was tested
on the BUMocap or BUMocap-X datasets. We attribute this
decrease in performance to the complexity and diversity of
the test motions, which were not captured as extensively in
the training motions from the Shelf dataset.

4.4 Computational complexity analysis

We reported the framework’s inference speed (the process-
ing time per frame from 2D to 3D in milliseconds (ms)) and
compared it with other state-of-the-art methods in Table 5.
We also reported the time consumption of other steps: 1) 2D
pose detection would take 5 ms, 2) Joint Cloud construction
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TABLE 5: Inference speed comparison with state-of-the-art
works on the Shelf dataset. We categorize these methods
as optimization-based (Opt.) and learning-based (Learn.)
methods. We report their processing time in milliseconds
per frame for the 2D-to-3D procedures. The average PCP
scores are also provided.

Type Method PCP ↑ Time↓

Opt.
4DAssocGraph [14] 97.6 31.9

MVPose [15] 96.9 ∼40
QuickPose [18] 98.1 2.94

Learn.

TesseTrack [21] 97.9 >333
PlaneSweepPose [30] 97.9 23.4

MMG-CRG [22] 97.7 ∼243
DMAE [23] 97.4 ∼78.5

FasterVoxelPose [28] 97.6 32.2

Ours with 3 views 96.4 76.5
Ours with 4 views 97.5 117.4
Ours with 5 views 98.2 229.1

TABLE 6: Ablation study on the Shelf dataset. PCP (%) is
used as the evaluation metric. “View” indicates the number
of views used during inference. “mask” stands for Joint
Cloud masking. “kine. loss” stands for the Kinematic Loss.

Model View A1 A2 A3 AVGmask kine. loss

✗ ✗ 5 99.0 91.0 98.0 96.0
✗ ✓ 5 99.2 91.9 98.3 96.5
✓ ✗ 5 98.7 96.2 98.5 97.8

✓ ✓ 2 95.6 86.8 92.0 91.5
✓ ✓ 3 98.2 94.1 97.1 96.4
✓ ✓ 4 99.1 95.2 98.1 97.5

✓ ✓ 5 99.3 97.0 98.2 98.2

would take 3 ms. Our framework was tested on an Intel
i7-8700 3.20 GHz CPU and one NVIDIA RTX3090 GPU.
Since some works didn’t release the code, we can only
directly reference the performance metrics as reported in
the original papers. Table 5 presents the inference speed of
three optimization-based approaches [14], [15], [18] and five
learning-based approaches [21], [22], [23], [28], [30] (Our
framework falls into the second category) as well as the
performance of our model when the number of input views

TABLE 7: Performance for JCSAT variants on the Shelf
dataset. Average PCP(%), Precision (%), Recall (%) and
MPJPE (mm) are reported.

Model PCP ↑ Precision ↑ Recall ↑ MPJPE ↓

OTAP-a 96.9 99.4 99.4 59.2
OTAP-b 96.4 99.0 99.0 58.0
OTAP-c 97.3 99.5 99.5 57.4

TEnc-S&SEnc-S 94.7 97.7 97.7 66.5
TEnc-S&SEnc-M 96.5 99.0 99.0 63.5
TEnc-M&SEnc-S 95.7 98.4 98.4 63.7
TEnc-M&SEnc-L 97.1 99.3 99.3 62.5
TEnc-L&SEnc-M 98.2 99.4 99.4 57.8
TEnc-L&SEnc-L 98.1 99.6 99.6 58.6

TEnc-M&SEnc-M 98.2 99.5 99.5 57.3

TABLE 8: Comparison with 4DAssocGraph [14] (abbrevi-
ated as 4DA) on the Shelf dataset when camera parameters
are inaccurate. PCP (%) is used as the evaluation metric.
“Inac. views” denotes the number of inaccurate views during
inference.

Inac. views A1 A2 A3 AVG
Method Ours 4DA Ours 4DA Ours 4DA Ours 4DA

1 99.8 98.9 93.5 95.7 98.2 97.1 97.2 97.2
2 98.7 97.8 91.6 91.5 97.6 97.6 96.0 95.6
3 45.2 44.1 29.2 37.5 30.6 31.4 35.0 37.7

0 99.3 99.0 97.0 96.2 98.2 97.6 98.2 97.6

TABLE 9: Comparison with 4DAssocGraph [14] (abbrevi-
ated as 4DA) on the Shelf dataset with different input
image resolution rescaling factors. PCP (%) is used as the
evaluation metric.

Factor A1 A2 A3 AVG
Method Ours 4DA Ours 4DA Ours 4DA Ours 4DA

x0.25 99.7 98.7 94.1 95.3 98.4 97.7 97.4 97.2
x0.50 99.8 98.8 94.3 95.8 98.3 97.5 97.5 97.4
x0.75 99.7 99.0 95.7 96.1 98.4 97.6 97.9 97.6

x1.00 99.3 99.0 97.0 96.2 98.2 97.6 98.2 97.6

is reduced. It reveals that recent learning-based methods
are generally slower than optimization-based methods. Our
method demonstrates a rapid increase in inference speed
as the number of input views decreases, underscoring its
potential for acceleration.

Remark. We would like to clarify that, while Quick-
Pose [18] appears to operate at a higher speed than our
method with a small accuracy decrease of 0.1dB, such
advantage in speed shall be attributed to professional
programming optimization, such as the GNU C++ com-
piler [53]. However, learning-based approaches like ours
typically utilize PyTorch [54] with costly floating-point com-
putations. Therefore, a direct comparison of computational
costs between these two method groups would be unfair.
What’s more important, since the Shelf dataset only contains
relatively easy scenarios, the actual performance gap is not
as trivial as Table 5 suggests. This is what motivates us to
build a fully annotated dataset, BUMocap-X, with heavy
occlusions and complex interactions. Table 3 showcases our
framework’s capability, which excels all compared ones
by an obvious margin. It also shows that learning-based
approaches (i.e., DMAE [23], Faster VoxelPose [28] and
TEMPO [25]) are superior to optimization-based approaches
(4DAssocGraph [14]) under this more challenging dataset
with heavy occlusions.

4.5 Ablation Study

Masked Learning and Kinematic Loss. We first investi-
gated the impact of the Joint Cloud masked learning as well
as the designed Kinematic Loss in rows 1 to 3 of Table. 6 by
PCP metrics on the Shelf dataset. We observed that when
we remove the masking procedure, the PCP score drops
4%. When the Kinematic Loss is removed, the PCP score
drops 0.4%. These results show that the Joint Cloud masking
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TABLE 10: Details of the variants of the Encoder. We re-
port the number of each variant’s parameters in millions
(Params). “Dim.” denotes the corresponding dimension.

Encoder Layers Hidden Dim. Head Dim. Heads Params

Small 8 128 16 16 1.33
Medium 16 256 16 16 3.20

Large 16 512 16 16 8.55

TABLE 11: Generalization evaluation of the proposed JC-
SAT. We train our model individually on the BUMocap,
BUMocap-X and Shelf datasets and test it on others. The
MPJPE (mm) is reported.

Training Dataset MPJPE ↓
BUMocap BUMocap-X Shelf BUMocap BUMocap-X Shelf

✓ 52.2 64.0 59.8
✓ 66.0 49.7 61.3

✓ 83.6 68.3 57.3

procedure increases the robustness of the model and the
Kinematic Loss further improves its performance.
Observation number. As mentioned, Joint Cloud collects
information from all estimated 2D joints. As our model
reasons on trajectile, skeletal and angular information, we
assume it gains robustness to ambiguities caused by oc-
clusions. To validate our assumption, we decreased the
observation number and compared the PCP scores on the
Shelf dataset. Rows 4 to 6 of Table 6 demonstrate that our
model can overcome ambiguities caused by occlusions.
Inaccurate camera parameters. We further assessed our
model’s resilience to inaccurate camera parameters and
compared the results with 4DAssocGraph [14]. We denote
the view with inaccurate camera parameters as inaccurate
view. We intentionally add random errors to the camera
parameters which causes random translation offsets within
the range [−0.25cm, 0.25cm] and random rotations around
a random axis within the range [−2.5◦, 2.5◦]. Results in Ta-
ble 8 show that our model remains stable and outperforms
4DAssocGraph with no more than two inaccurate views. Both
of our method and 4DAssocGraph degrade seriously with
three inaccurate views. This noise causes the triangulation
step to fail in the early stages of both pipelines.
Different input resolution. Considering that reducing the
size of input images may result in the loss of semantic
information and consequently degrade the performance of
the 2D detector. We then compared our model against 4DAs-
socGraph [14] with different rescaling factors. As shown in
Table 9, ours exhibits superior robustness. Notably, when
the rescaling factor is set to 0.5, our model achieves higher
PCP scores for A1 and A3 than with a factor of 1.0. This sug-
gests that our model has learnt motion prior, compensating
for the missing information.
Feature aggregation. The impact of different feature aggre-
gation methods in the proposed OTAP module is shown in
rows 1 to 3 of Table 7. We investigated several aggregation
combinations described in Sec. 3.3: a) all OTAPs adopt
non-selective aggregation (OTAP-a); b) TOTAP and SOTAP

adopt non-selective aggregation and VOTAP adopts selective
aggregation (OTAP-b); c) TOTAP and SOTAP adopt selective

aggregation and VOTAP adopts non-selective aggregation
(OTAP-c); d) all OTAPs adopt selective aggregation (TEnc-
M&SEnc-M, i.e. our final model). We observed that replacing
the selective aggregation with non-selective aggregation
methods leads to the most 2% performance drop on PCP
and 4.9% in terms of MPJPE. The changes to Precision and
Recall are not obvious. Results show the optimal transport
framework helps JCSAT to select the most suitable candi-
date representation and further improves its performance.
Variants of the Encoder. We assessed our model over
different configurations, as summarized in Table 10. There
are three variant designs for both the Trajectory Encoder
TEnc and the Structure Encoder SEnc. We reported the
corresponding performance in rows 4 to 10 of Table 7, where
TEnc-S, TEnc-M and TEnc-L denote the Trajectory Encoder
applied in “Small”, “Medium” and “Large” configurations
respectively. Other notations such as SEnc-S follow the same
naming rules. Results in Table 7 reveal that SEnc is more
influential in the overall performance of the model. This is
evidenced by the larger performance gains observed with
increases in SEnc’s parameters compared to those in TEnc.
The combination of TEnc-M and SEnc-M yields the most
balanced outcomes in terms of computing complexity and
accuracy.

5 LIMITATIONS AND FUTURE DIRECTIONS

As mentioned in Sec. 3.2, Joint Cloud represents a 5-
dimensional matrix, formulated as J ∈ RN×V̇×Ṁ×I×3.
During the process of encoding, each encoder operates on
three dimensions. For instance, TEnc takes N × Ṁ × dim as
input. In practical implementation, we set N = 10, Ṁ = 4
for one trajectory and there are 25 trajectories in total. Given
the significant computational complexity associated with
this setup, the proposed framework currently cannot run in
real-time. Recent works [17], [41] propose several encoding
strategies to reduce the computing complexity, e.g., 1) use
fewer tokens for representation, and 2) process data on the
temporal and spatial domains in the same memory buffer.
We will try to use fewer tokens to represent the motion,
with each token denoting a trajectory or skeletal structure.
Further acceleration can be achieved using TensorRT [55]
and frame-skipping strategies. To deal with even more
serious occlusion, we will further investigate applying even
more robust priors to better learn structures from noisy
observations, such as fully articulated humanoid models
(e.g., the SMPL-family [38], [56]).

6 CONCLUSIONS

In this paper, we have first introduced the concept of Joint
Cloud which contains 3D candidates triangulated from 2D
detections regardless of their ID in every view pair. This
data arrangement facilitates information utilization from all
observation angles. Since Joint Cloud is noisy and redun-
dant, we have proposed a Joint Cloud Selection and Aggre-
gation Transformer (JCSAT) framework to deeply explore
the trajectile, skeletal and angular correlations among all
3D candidates derived from the Joint Cloud. Different from
existing Transformer-based frameworks that fully rely on
self-attention mechanisms to aggregate features, we have
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proposed the Optimal Token Attention Path (OTAP) module
implemented by a trainable optimal transport framework to
select the most informative features. Furthermore, to vali-
date the effectiveness of the proposed framework, we have
built and published a new multi-person motion capture
dataset featuring complex interactions and severe occlu-
sions, named BUMocap-X. Extensive experiments on public
datasets as well as our BUMocap-X dataset establish the
superiority of our approach over state-of-the-art methods.
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Toulon and KU Leuven. Wei’s research interests are in speech and
music intelligence, including AI music generation, speech enhancement
and separation, room acoustics, as well as speech and audio event
recognition. He was a former Marie Curie Fellow and was selected into
the Beijing Overseas Talent Aggregation Project.

Yike Guo (Fellow, IEEE) is currently a Chair Pro-
fessor in the Department of Computer Science
and Engineering, the Hong Kong University of
Science and Technology, where he serves as the
Provost since December 2022. He received his
first-class honours degree in Computing Science
from Tsinghua University in 1985 and obtained
his PhD degree from Imperial College London in
1994. He has been a full Professor in the Depart-
ment of Computing of Imperial College London
since 2002. He was the Founding Director of the

Data Science Institute at Imperial College London since 2014. In 2015
- 2020, Professor Guo was appointed as Non-Executive Dean of the
School of Computer Engineering and Science in Shanghai University
and he is now the Honorary Dean of the School. Prior to joining HKUST,
Professor Guo was the Vice President (Research and Development) and
the Dean of Graduate School at Hong Kong Baptist University since
2020.

Professor Guo’s research focuses on machine learning and data
mining for large-scale scientific applications including distributed data
mining methods, machine learning and informatics systems for biol-
ogy, chemistry, geophysics, healthcare, environment, economy, finance,
social media, creative design and art applications. He has extensive
experience in working with industries. He has led the development of
start-up companies and worked with leading international companies
such as GSK, Pfizer, Roche, KPMG, Huawei and BBC et al in large
research projects and consulting services.

Professor Guo is Fellow of Royal Academy of Engineering (FREng), a
Member of Academia Europaea (MAE), Fellow of Hong Kong Academy
of Engineering Sciences (FHKEng), Fellow of the Institute of Electrical
and Electronics Engineers (FIEEE), Fellow of British Computer Society
(FBCS), and Fellow of Chinese Association for Artificial Intelligence
(FCAAI). He has served on the editorial board of many first-tier journals.
He is the editor-in-chief of Annual Reviews of Data Sciences (World Sci-
entific), and the deputy editor-in-chief of CAAI Transections on Intelligent
Systems (the official journal of CAAI), Machine Intelligence Research
(Springer).



15

Supplementary Material for
Every Angle Is Worth A Second Glance: Mining Kinematic

Skeletal Structures from Multi-view Joint Cloud
Junkun Jiang, Jie Chen, Member, IEEE , Ho Yin Au, Mingyuan Chen, Wei Xue, Member, IEEE ,
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Fig. 1: Demonstration of the triangulation procedure in
the Joint Cloud construction pipeline. Three views are pre-
sented in the scene. The 2D detections of the ”Left Knee”
are depicted by yellow dots. From one of the view pair
combinations, the 3D triangulated candidates are shown in
orange dots. Orange dashed lines symbolize the ray cast
from a camera centre to the 2D point on the camera plane.
For clarity, only four candidates are illustrated while there
should be twelve candidates in total.

1 JOINT CLOUD CONSTRUCTION EXAMPLE

Here we give an example of the detailed construction of
the proposed Joint Cloud. Images used here are from the
Shelf dataset [57]. We will explain the process step by
step with visual demonstrations. For a more illustrative
explanation, we provide a supplementary video containing
joint cloud construction animation and visual comparison
to other methods.

1.1 Triangulation in view pairs
As mentioned in the main paper, the Joint Cloud consists of
noisy and redundant 3D joint candidates ji,ṁn,v̇ ∈ R3, where
subscript n ∈ [1, N ] denotes the frame number and v̇ ∈
[1, V̇ ] represents one of the view pair combinations (Eq. 1 in
the main paper), superscript i ∈ [1, I] denotes the joint type
and ṁ ∈ [1, Ṁ ] denotes joint’s initial identity (Eq. 2 in the
main paper) respectively. As such, the Joint Cloud can be
formulated as:

Jn =
{
ji,ṁn,v̇ ∈ R3

}
,

J = {J1,J2, · · · ,JN} ,

where Jn stands for n-th frame’s 3D candidate set and J is
the Joint Cloud accumulated from Jn.

Fig. 1 illustrates a scene with three views and one frame.
If OpenPose [7] is used as the 2D pose detection module, the
total number of joint type I = 25 due to the 25-joint skeleton
output format of the OpenPose [7]. As the number of the

Fig. 2: Demonstration of the mid-hip clustering procedure in
the Joint Cloud construction pipeline. Yellow dots represent
the 2D detections of “mid-hip”. Orange dots represent the
3D triangulated candidates. Red dots represent the centroid
of each cluster. We utilize the centroid as each individual’s
body centre indicating the corresponding Joint Cloud sub-
set’s centre.

observed individuals is 2 in each view, every two views,
a.k.a. one view pair combination observes Ṁ = 2×2 = 4 ID
combinations. N = 1 cause there is only one frame. V̇ = 3
because there are three views and the view pair combination

is
(
3
2

)
= 3. Let’s focus on the joint type “Left Knee”.

Regardless of the individual’s ID, literally, we have 6 “Left
Knee” joints denoted as A, B, C, D, E, and F in three views.
We can triangulate four candidates of “Left Knee” from each
view pair combination v̇, e.g. A and C, A and D, B and C,
B and D. Combining three view-pair combinations, the total
number of candidates for “Left Knee” leads to 12. In Fig. 1,
we only demonstrate one view combination’s candidates
for a clear view. Following the above instruction, we can
triangulate tons of joint candidates from every frame in a
video sequence. In the next subsection, we propose a simple
clustering algorithm to assign initial IDs to joint candidates
so that we get a smaller Joint Cloud.

1.2 Assign initial IDs to Joint Cloud

Since joint candidates are noisy and redundant in the Joint
Cloud, we can adopt a rough filter to assign the initial
target identity to those candidates thereby reducing the
computational complexity. To illustrate, we know that a
human leg cannot exceed a length of two meters, so we
can filter out any limbs that surpass this limit. Following
this intuition, we propose a simple but efficient clustering
algorithm, outlined in Algorithm 1 of the main paper, to
enable effective data reduction.
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Fig. 3: Illustration of the failure case of the mid-hip cluster-
ing. From left to right: a), b), c) three continuous frames with
the corresponding frame index n = {0, 1, 2}, d) trajectories
of mid-hips in three frames.

Fig. 4: Illustration of one individual’s Joint Cloud in three
continuous frames. Blue dots indicate the candidates that
are projected back to 2D. Red dash lines highlight the
outliers.

1.2.1 Mid-hip clustering

We need to verify the number of individuals in every frame
so that we can divide the Joint Cloud for each individual. To
achieve this, we employ the KMeans clustering algorithm,
utilizing joint candidates of the “mid-hip” type, to obtain
a distinct central location for each individual. Initially, we
establish the minimum number of individuals across views.
Let’s take the scene depicted in Fig. 2 as an example, the
minimum individual number of this scene is 2. As men-
tioned in the main paper, the minimum individual number
in one scene is the minimum number of detected persons
across different views. Subsequently, we set the cluster num-
ber with the minimum individual number and cluster the
mid-hip candidates. Lastly, after clustering, we assign the
centroid of each cluster as each individual’s central location.
Therefore, we can divide those joint candidates with two
IDs and we process them separately.

1.2.1.1 Discussion: On possible failure case is de-
picted in Fig. 3. We illustrate it in a two-dimensional space.
Similar to Fig. 2, the orange dots represent the candidates
and the red dots represent the cluster centroids. As shown
in Fig. 3, there are three continuous frames in n = {0, 1, 2}.
Blue arrows illustrate two trajectories of the cluster centroids
in the right sub-figure. We can find that, one trajectory is not
smooth. Generally, this is because the performance of the
KMeans algorithm tends to be affected by imbalanced data.
In cases where mid-hip candidates are widely dispersed,
the location of the individual centre can be unstable across
frames. More advanced clustering algorithms can be em-
ployed to ameliorate the imbalanced data bias. Alongside
this, object-tracking algorithms can be also employed to
enhance the continuity of the Joint Cloud subset’s centre
across frames. In our case, the aforementioned scenario does
not arise.

TABLE 1: Distance thresholds in metres for each joint type
are listed here. We calculate the distance between the joint
candidate and the individual centre.

Joint type Threshold Joint type Threshold
Nose 0.85 Neck 0.7

RShoulder 0.7 RElbow 0.8
RWrist 0.8 LShoulder 0.7
LElbow 0.7 LWrist 0.8
MidHip 0.3 RHip 0.3
RKnee 0.6 RAnkle 1.0
LHip 0.3 LKnee 0.6

LAnkle 1.0 REye 0.9
LEye 0.9 REar 0.85
LEar 0.85 LBigToe 1.0

LSmallToe 1.0 LHeel 1.0
RBigToe 1.0 RSmallToe 1.0
RHeel 1.0 - -

1.2.2 Thresholding for each individual

For each cluster centroid (a.k.a. individual centre), we adopt
several thresholds to filter outlier candidates and assign
the remaining candidates to the current individual subset.
Specifically, we first calculate the Euler distance between
the candidate and the current individual centre. If the dis-
tance is bigger than the given threshold, we next filter this
candidate. Table 1 lists the detailed thresholds utilised in the
main paper.

1.2.2.1 Discussion: The above processes are in-
tended to reduce the Joint Cloud’s complexity. Nonetheless,
one possible situation is that two individuals stand close
and interact, rough thresholds may assign redundant candi-
dates to each individual. This situation can be depicted as
Fig 4. In Fig 4, there are three continuous Joint Cloud repro-
jections. While the outliers highlighted by red dash lines are
not filtered correctly, we can still identify potential outliers
through discontinuous patterns. To select the potentially
valid candidates from the noisy and redundant Joint Cloud,
we involve the spatial and temporal information: skeletal
structure, and joint trajectory. The redundant candidates will
lead to a false skeleton in every frame and discontinuous
trajectories across the frames, and our proposed framework
can distinguish them.

1.3 Intuitive visual examples

We provide intuitive visual examples to demonstrate the
trajectories and skeletal structures in the proposed Joint
Cloud. We want to justify that, in the Joint Cloud, we
can select candidates to form a complete movement based
on joint trajectories, skeletal structures and angular per-
spectives. Therefore a Transformer can also deeply explore
the correlations among the trajectile, skeletal structural and
angular information derived from Joint Cloud and regress
those features to the 3D motion. In Fig. 5, we present the
skeletal and trajectile data for one individual in ten frames,
with a variety of colour-coded view pairs to differentiate
between them. In Fig. 5a, we connect all possible limbs for
every frame, thus revealing an approximate body skeletal
structure. Similarly, in Fig. 5b, we connect all joints in the
same type to indicate their corresponding trajectories, thus
revealing a rough body movement. Therefore, Joint Cloud
can provide enough information to explore the implicit
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(a) Skeletal structures in all view pair combinations.

(b) Trajectories in all view pair combinations.

Fig. 5: Demonstration of skeletal and trajectile information
for one individual in Joint Cloud. Different colours represent
different view pair combinations.

Fig. 6: Demonstration of the data arrangement of the Joint
Cloud. Blue-coloured cubes and white-coloured cubes rep-
resent the candidates and zero padding respectively.

movement representations. With the help of the Trans-
former, we can regress those implicit representations to the
final motion.

1.4 Data arrangement

As a supplementary explanation to the padding process
described in Sec. 3.2 of the main paper, we visualize this
process in Fig. 6. Recall that the padded Joint Cloud is
organized as a 5-dimensional matrix J ∈ RN×V̇×Ṁ×I×3. If
we ignore the last dimension, we can illustrate the matrix
in Fig. 6. Every blue-coloured cube represents one joint
candidate, and every white-coloured cube represents zero
padding. In practice, the maximum limit for the joint candi-
date count is restricted to four.

2 NETWORK STRUCTURE

As introduced in the main paper, the proposed Joint Cloud
Selection and Aggregation Transformer (JCSAT) consists
of three Transformer-based encoders for trajectile, skele-
tal structural and angular cross-embedding. Each encoder
is a vanilla Visual Transformer (ViT) [46] consisting of
multiheaded self-attention blocks (MSAs) and feed-forward
network blocks (FFNs). Layernorm (LN) is applied before
MSAs and FFNs. Residual connections are employed after
every block. JCSAT takes Joint Cloud as input and treats

every joint candidate as an independent token encoded by
the Trajectory Encoder and Structure Encoder in parallel. Af-
ter encoding, we propose an Optimal Token Attention Path
(OTAP) module that differentiates and optimally selects
reliable and representative candidate token features from
the Trajectory Encoder and Structure Encoder respectively.
Next, we sum up trajectile features and skeletal structural
features on the view dimension (in the main paper, we also
refer to features as representations). So for each view pair
combination, there is one motion feature to represent the
body motion. Then, we encode the motion features by the
View Encoder followed by an OTAP module to select one
view’s motion feature among all view pair combinations.
Last, an MLP prediction head is used to regress the motion
feature to 3D movements. Table 2 and Table 3 show the
details of the JCSAT structure. We will release the whole
code of our proposed framework as well as the newly
collected multi-view multi-person labelled motion capture
dataset after publication.

TABLE 2: The detailed structure of the proposed Joint Cloud
Selection and Aggregation Transformer (JCSAT) network.
‘Num’ denotes the number of layers. ‘Dim’ denotes the
corresponding dimension.

Trajectory Encoder Num
In Dim 3
Enc Dim 256
Enc Depth 16
MSA Head 16
MSA Dim per Head 16
FFN Dim 256
Structure Encoder Num
In Dim 3
Enc Dim 256
Enc Depth 16
MSA Head 16
MSA Dim per Head 16
FFN Dim 256
View Encoder Num
In Dim 256
Enc Dim 32
Enc Depth 8
MSA Head 8
MSA Dim per Head 4
FFN Dim 3

TABLE 3: The detailed structure of the proposed Optimal
Token Aggregation Path (OTAP) module. We implement it
by a trainable optimal transport technique [47]. ‘Num’ de-
notes the number of layers. ‘Dim’ denotes the corresponding
dimension.

T-OTAP Num
In Dim 256
MSA Head 1
Log Domain True
Out Dim 25
S-OTAP Num
In Dim 256
MSA Head 1
Log Domain True
Out Dim 10
V-OTAP Num
In Dim 32
MSA Head 1
Log Domain True
Out Dim 1
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2.1 Joint type conversion
As discussed in Sec. 3.2.2 of the main paper, we utilize an
additional MLP layer after the prediction head to convert
the predicted movement into the ground-truth joint type.
Inside, there are two linear layers that convert the input
dimension from 25 to 20 and 20 to 15 sequentially.

3 TRAINING DETAILS

To easily reproduce our result, we provide the training
specifications in Table 4. Moreover, following [23], [24], [46],
we adopt the linear learning rate scaling rule [58], i.e.,
lr = base lr × batch size/256.

TABLE 4: Specifications for network training.

Specifications
optimizer AdamW [59]
optimizer momentum β1, β2 = 0.9, 0.999
weight decay 0.05
learning rate schedule cosine decay [60]
warmup epochs [58] 30
gradient clipping 0.02
drop out No
base learning rate 2e-4
batch size 5
epoch size 120

4 ADDITIONAL RESULTS

We offer supplementary visual comparisons with Zhang et
al. [14] (CVPR’20), Dong et al. [15] (TPAMI’21) and Jiang
et al. [23] (MM’22) on the Shelf dataset and our newly
collected multi-view multi-person motion capture dataset.
We highlight the false reconstruction with red dotted boxes.
Same to the main paper, the visualization of Joint Cloud
for one individual is included for every frame sample.
Furthermore, we provide synthetic videos for continuous
evaluation.

Fig. 7 and Fig. 8 demonstrate the results of two con-
tinuous clips on the Shelf dataset. In Fig. 7, let’s focus on
the second and third individuals which are under heavy
conclusion. [14] reconstructs most of the correct body parts
while the left foot is wrongly produced. [15] reconstructs
inconsistent identifications (the third individual’s colour
changes through frames). [23] predicts the imprecise head
location. Our framework produces more accurate results in
terms of identification consistency (don’t change through
frames) and joint location precision (the second individual’s
foot location is relatively accurate). In Fig. 8, [14], [15], [23]
struggle in reconstructing the third individual’s movement.
Since the third individual is under heavy occlusion, the
locations of the feet are badly reconstructed. Also [15]
suffers from inconsistent individual identification through
frames (the skeleton colour is changed). But in our frame-
work, the proposed JCSAT explores the joint trajectory and
skeletal structure information. The occluded joint part can
be regressed from the former and latter frames so that our
framework outperforms others.

Fig. 9 and Fig. 10 demonstrate the results of two con-
tinuous clips on our newly collected dataset. This dataset
records five individuals’ dancing movements including
turns and rotations with heavy occlusions and ambiguities

leading to a challenging scenario. Thus we want to vali-
date our proposed framework that JCSAT learns to regress
the motion via trajectories and skeletal structures and also
show its superiority among state-of-the-art frameworks. In
Fig. 9, [14] reconstructs discontinuous movements while
the tracking energy function gives all individuals consistent
identities. [23] fail to reconstruct correct movements due to
its simple re-id algorithm. The re-id algorithm is unable to
differentiate between two individuals with similar appear-
ances. Our framework regresses more accurate movements.
[15] fails to reconstruct most of the movements. We believe
the failure reason is similar to [23]’s. That is [15] wrongly
re-identify each detection across views. Besides, we find
that [15]’s 2D pose detector is prone to detect humanoid
shadows as poses. In other words, [15] is sensitive to the
appearance of detections. If the detections share similar
appearances (e.g. dark-coloured outlooking in a weak light
environment and the grey shadows), the re-id algorithm will
fail. Despite this, in Fig. 10, our framework fails in some
frames in terms of the light-blue-coloured individual. This
is because, in the first, JCSAT doesn’t detect this individual.
The trajectile information is missing. [14] reconstructs in-
correct arms for the dark-blue-coloured individual. Overall,
ours performs better than [14], [15], [23] in this scene.
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Fig. 7: Visual comparisons on the Shelf dataset in five continuous frames (214-218). We demonstrate 3D poses and the
corresponding reprojection on the 5th view. From top to bottom, Zhang et al. [14] (CVPR’20), Dong et al. [15] (TPAMI’21),
Jiang et al. [23] (MM’22), our proposed framework (JCSAT) and Joint Cloud. We highlight the false reconstruction with red
dotted boxes.
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Fig. 8: Visual comparisons on the Shelf dataset in five continuous frames (246-250). We demonstrate 3D poses and the
corresponding reprojection on the 5th view. From top to bottom, Zhang et al. [14] (CVPR’20), Dong et al. [15] (TPAMI’21),
Jiang et al. [23] (MM’22), our proposed framework (JCSAT) and Joint Cloud. We highlight the false reconstruction with red
dotted boxes.
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Fig. 9: Visual comparisons on our newly collected dataset in five continuous frames (30-34). We demonstrate 3D
poses and the corresponding reprojection on the 5th view. From top to bottom, Zhang et al. [14] (CVPR’20), Dong et
al. [15] (TPAMI’21), Jiang et al. [23] (MM’22), our proposed framework (JCSAT) and Joint Cloud. We highlight the false
reconstruction with red dotted boxes.
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Fig. 10: Visual comparisons on our newly collected dataset in five continuous frames (235-239). We demonstrate 3D
poses and the corresponding reprojection on the 5th view. From top to bottom, Zhang et al. [14] (CVPR’20), Dong et
al. [15] (TPAMI’21), Jiang et al. [23] (MM’22), our proposed framework (JCSAT) and Joint Cloud. We highlight the false
reconstruction with red dotted boxes.
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